ImagineChina/Corbis
The southern city of Guangzhou has long held the largest eye hospital in China. But about five years ago, it became clear that the Zhongshan Ophthalmic Center needed to expand.
More and more children were arriving with the blurry distance vision caused by myopia, and with so many needing eye tests and glasses, the hospital was bursting at the seams. So the centre began adding new testing rooms — and to make space, it relocated some of its doctors and researchers to a local shopping mall. Now during the summer and winter school holidays, when most diagnoses are made, “thousands and thousands of children” pour in every day, says ophthalmologist Nathan Congdon, who was one of those uprooted. “You literally can't walk through the halls because of all the children.”

LISTEN

Ian Morgan talks about about ways to prevent myopia


00:00
East Asia has been gripped by an unprecedented rise in myopia, also known as short-sightedness. Sixty years ago, 10–20% of the Chinese population was short-sighted. Today, up to 90% of teenagers and young adults are. In Seoul, a whopping 96.5% of 19-year-old men are short-sighted.
Other parts of the world have also seen a dramatic increase in the condition, which now affects around half of young adults in the United States and Europe — double the prevalence of half a century ago. By some estimates, one-third of the world's population — 2.5 billion people — could be affected by short-sightedness by the end of this decade. “We are going down the path of having a myopia epidemic,” says Padmaja Sankaridurg, head of the myopia programme at the Brien Holden Vision Institute in Sydney, Australia.
The condition is more than an inconvenience. Glasses, contact lenses and surgery can help to correct it, but they do not address the underlying defect: a slightly elongated eyeball, which means that the lens focuses light from far objects slightly in front of the retina, rather than directly on it. In severe cases, the deformation stretches and thins the inner parts of the eye, which increases the risk of retinal detachment, cataracts, glaucoma and even blindness. Because the eye grows throughout childhood, myopia generally develops in school-age children and adolescents. About one-fifth of university-aged people in East Asia now have this extreme form of myopia, and half of them are expected to develop irreversible vision loss.
This threat has prompted a rise in research to try to understand the causes of the disorder — and scientists are beginning to find answers. They are challenging old ideas that myopia is the domain of the bookish child and are instead coalescing around a new notion: that spending too long indoors is placing children at risk. “We're really trying to give this message now that children need to spend more time outside,” says Kathryn Rose, head of orthoptics at the University of Technology, Sydney.

Vision quest

For many years, the scientific consensus held that myopia was largely down to genes. Studies in the 1960s showed that the condition was more common among genetically identical twins than non-identical ones, suggesting that susceptibility is strongly influenced by DNA1. Gene-finding efforts have now linked more than 100 regions of the genome to short-sightedness.

Singapore National Myopia Programme/Health Promotion Board
A Singapore poster encourages children to spend time outside to prevent myopia.
But it was obvious that genes could not be the whole story. One of the clearest signs came from a 1969 study of Inuit people on the northern tip of Alaska whose lifestyle was changing2. Of adults who had grown up in isolated communities, only 2 of 131 had myopic eyes. But more than half of their children and grandchildren had the condition. Genetic changes happen too slowly to explain this rapid change — or the soaring rates in myopia that have since been documented all over the world (see 'The march of myopia'). “There must be an environmental effect that has caused the generational difference,” says Seang Mei Saw, who studies the epidemiology and genetics of myopia at the National University of Singapore.
There was one obvious culprit: book work. That idea had arisen more than 400 years ago, when the German astronomer and optics expert Johannes Kepler blamed his own short-sightedness on all his study. The idea took root; by the nineteenth century, some leading ophthalmologists were recommending that pupils use headrests to prevent them from poring too closely over their books.